jueves, 27 de enero de 2011

campo electrico

El campo eléctrico es un campo físico que es representado mediante un modelo que describe la interacción entre cuerpos y sistemas con propiedades de naturaleza eléctrica.[1] Matemáticamente se describe como un campo vectorial en el cual una carga eléctrica puntual de valor q sufre los efectos de una fuerza eléctrica \vec F dada por la siguiente ecuación:
(1) \vec F = q \vec E
En los modelos relativistas actuales, el campo eléctrico se incorpora, junto con el campo magnético, en campo tensorial cuadridimensional, denominado campo electromagnético Fμν.[2]
Los campos eléctricos pueden tener su origen tanto en cargas eléctricas como en campos magnéticos variables. Las primeras descripciones de los fenómenos eléctricos, como la ley de Coulomb, sólo tenían en cuenta las cargas eléctricas, pero las investigaciones de Michael Faraday y los estudios posteriores de James Clerk Maxwell permitieron establecer las leyes completas en las que también se tiene en cuenta la variación del campo magnético.
Esta definición general indica que el campo no es directamente medible, sino que lo que es observable es su efecto sobre alguna carga colocada en su seno. La idea de campo eléctrico fue propuesta por Faraday al demostrar el principio de inducción electromagnética en el año 1832.
La unidad del campo eléctrico en el SI es Newton partido de culombio (N/C), voltio partido de metro (V/m) o, en unidades básicas, kg·m·s−3·A−1.
La definición más intuitiva acerca del campo eléctrico se la puede estudiar mediante la ley de Coulomb. Esta ley, una vez generalizada, permite expresar el campo entre distribuciones de carga en reposo relativo. Sin embargo, para cargas en movimiento se requiere una definición más formal y completa acerca del campo requiere el uso de cuadrivectores y el principio de mínima acción. A continuación se describen ambas.

[editar] Definición mediante la ley de Coulomb

Campo eléctrico de una distribución lineal de carga. Una carga puntual P es sometida a una fuerza en direccion radial \vec u_r por una distribucion de carga λ en forma de diferencial de linea (dL), lo que produce un campo eléctrico d\vec E.
Partiendo de la ley de Coulomb que expresa que la fuerza entre dos cargas en reposo relativo depende del cuadrado de la distancia, matemáticamente es igual a:[1]
\bold{F}_{12} = \frac{1}{4 \pi \epsilon_0} \frac{q_1 q_2}{r^2_{12}} \hat{\bold{r}}_{12}
Donde:
\scriptstyle \epsilon_0 es la permitividad eléctrica del vacío tiene que ver con el sistema internacional,
q_1,\ q_2 son las cargas que interactúan,
r = \|\bold{r}_{12}\| es la distancia entre ambas cargas,
\bold{r}_{12}, es el vector de posición relativa de la carga 2 respecto a la carga 1.
y \hat r es el unitario en la dirección \vec r. Nótese que en la fórmula se está usando ε0, esta es la permeabilidad en el vacío. Para calcular la interacción en otro medio es necesario cambiar la permeabilidad de dicho medio. (ε = εr0)
La ley anterior presuponía que la posición de una partícula en un instante dado, hace que su campo eléctrica afecte en el mismo instante a cualquier otra carga. Ese tipo de interacciónes en las que el efecto sobre el resto de partículas parece dependender sólo de la posición de la partícula causante sin importar la distancia entre las partículas se denomina en física acción a distancia. Si bien la noción de acción a distancia fue aceptada inicialmente por el propio Newton, experimentos más cuidados a lo largo del siglo XIX llevaron a desechar dicha noción como no-realista. En ese contexto se pensó que el campo eléctrico no sólo era un artificio matemático sino un ente físico que se propaga a una velocidad finita (la velocidad de la luz) hasta afectar a otras partículas. Esa idea conllevaba modificar la ley de Coulomb de acuerdo con los requerimientos de la teoría de la relatividad y dotar de entidad física al campo eléctrico.[1] Así, el campo eléctrico es una distorsión electromagnética que sufre el espacio debido a la presencia de una carga. Considerando esto se puede obtener una expresión del campo eléctrico cuando este sólo depende de la distancia entre las cargas:
\bold{E} = \frac{1}{4 \pi \epsilon_0} \frac{q}{r^2} \hat\bold{r}
Donde claramente se tiene que \scriptstyle \bold{F} = q \bold{E}, la que es una de las definiciones más conocidas acerca del campo eléctrico.

[editar] Definición formal

La definición más formal de campo eléctrico, válida también para cargas moviéndose a velocidades cercanas a la de la luz, surge a partir de calcular la acción de una partícula cargada en movimiento a través de un campo electromagnético.[2] Este campo forma parte de un único campo electromagnético tensorial Fμν definido por un potencial cuadrivectorial de la forma:[1]
(1) F^{\mu\nu}=\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu}\quad;
\qquad A^i = \left( \frac{\phi}{c},\bold{A} \right)
donde φ es el potencial escalar y \scriptstyle \bold A es el potencial vectorial tridimensional. Así, de acuerdo al principio de mínima acción, se plantea para una partícula en movimiento en un espacio cuadridimensional:
(2) S = - \int_a^b (mc\text{ ds} + \frac{e}{c}A_i \text{ dx}^i)
donde e es la carga de la partícula, m es su masa y c la velocidad de la luz. Reemplazando (1) en (2) y conociendo que dxi = uids, donde dxi es el diferencial de la posición definida dxi = (cdt,dx,dy,dz) y ui es la velocidad de la partícula, se obtiene:
(3) S = - \int_a^b (mc\text{ ds} + \frac{e}{c}\bold{A}\cdot\text{d}\bold{\text{r}} - e \phi\text{ dt})
El término dentro de la integral se conoce como el lagrangiano del sistema; derivando esta expresión con respecto a la velocidad se obtiene el momento de la partícula, y aplicando las ecuaciones de Euler-Lagrange se encuentra que la variación temporal de la cantidad de movimiento de la partícula es:
(4) \frac{d \bold{p}}{dt} = - \frac{e}{c} \frac{\partial \bold{A}}{\partial t} - e \vec\nabla \phi + \frac{e}{c} \bold{v} \times (\boldsymbol\nabla \times \bold A)
De donde se obtiene la fuerza total de la partícula. Los dos primeros términos son independientes de la velocidad de la partícula, mientras que el último depende de ella. Entonces a los dos primeros se les asocia el campo eléctrico y al tercero el campo magnético. Así se encuentra la definición más general para el campo eléctrico:[2]
(5) \vec E = -\frac{1}{c} \frac{\part \bold A}{\part t} - \boldsymbol\nabla \phi
La ecuación (5) brinda mucha información acerca del campo eléctrico. Por un lado, el primer término indica que un campo eléctrico es producido por la variación temporal de un potencial vectorial descrito como \scriptstyle \bold B = \boldsymbol \nabla \times \bold A donde \scriptstyle \bold B es el campo magnético; y por otro, el segundo representa la muy conocida descripción del campo como el gradiente de un potencial.[2]

interaccion electrostatica ley de coulomb

La ley de Coulomb puede expresarse como:
La magnitud de cada una de las fuerzas eléctricas con que interactúan dos cargas puntuales en reposo es directamente proporcional al producto de la magnitud de ambas cargas e inversamente proporcional al cuadrado de la distancia que las separa.
La ley de Coulomb es válida sólo en condiciones estacionarias, es decir, cuando no hay movimiento de las cargas o, como aproximación cuando el movimiento se realiza a velocidades bajas y en trayectorias rectilíneas uniformes. Es por ello que es llamada fuerza electrostática.
En términos matemáticos, la magnitud F \,\! de la fuerza que cada una de las dos cargas puntuales q_1 \,\! y q_2 \,\! ejerce sobre la otra separadas por una distancia d \,\! se expresa como:
F = \kappa \frac{\left|q_1 q_2\right|}{d^2} \,
Dadas dos cargas puntuales q_1 \,\! y q_2 \,\! separadas una distancia d \,\! en el vacío, se atraen o repelen entre sí con una fuerza cuya magnitud está dada por:
 F = \kappa \frac{q_1 q_2}{d^2} \,
La Ley de Coulomb se expresa mejor con magnitudes vectoriales:
 \bold{F} = \frac{1}{4 \pi \varepsilon}\frac{q_1 q_2}{d^2} \bold{u}_d = \frac{1}{4 \pi \epsilon} \frac{q_1 q_2(\bold{d}_2 -\bold{d}_1)}{\|\bold{d}_2-\bold{d}_1\|^3} \,
donde \scriptstyle \bold{u}_d \,\! es un vector unitario que va en la dirección de la recta que une las cargas, siendo su sentido desde la carga que produce la fuerza hacia la carga que la experimenta.
Al aplicar esta fórmula en un ejercicio, se debe colocar el signo de las cargas q1 o q2, según sean éstas positivas o negativas.
El exponente (de la distancia: d) de la Ley de Coulomb es, hasta donde se sabe hoy en día, exactamente 2. Experimentalmente se sabe que, si el exponente fuera de la forma (2+ \delta)\,\!, entonces \left | \delta \right |< 10^{-16} \,\!.
Representación gráfica de la Ley de Coulomb para dos cargas del mismo signo.
Obsérvese que esto satisface la tercera de la ley de Newton debido a que implica que fuerzas de igual magnitud actúan sobre \scriptstyle q_1 y \scriptstyle q_2. La ley de Coulomb es una ecuación vectorial e incluye el hecho de que la fuerza actúa a lo largo de la línea de unión entre las cargas.

 Constante de Coulomb

La constante \kappa \,\! es la Constante de Coulomb y su valor para unidades SI es \frac{1}{4 \pi \varepsilon} \,\! N/.
A su vez la constante \varepsilon = \varepsilon_r \varepsilon_0 \,\! donde \varepsilon_r \,\! es la permitividad relativa, \varepsilon_r >= 1 \,\!, y \varepsilon_0=8,85 \times 10^{-12} \,\! F/m es la permitividad del medio en el vacío.
Cuando el medio que rodea a las cargas no es el vacío hay que tener en cuenta la constante dieléctrica y la permitividad del material.
La ecuación de la ley de Coulomb queda finalmente expresada de la siguiente manera:
 F = \kappa\frac{q_1 q_2}{r^2} \,\!
La constante, si las unidades de las cargas se encuentran en Coulomb es la siguiente K = 9 * 109 * N * m2 / C2 y su resultado será en sistema MKS (N / C). En cambio, si la unidad de las cargas están en UES (q), la constante se expresa de la siguiente forma K = d * m2 / ues(q) y su resultado estará en las unidades CGS (D / UES(q)).

 Potencial de Coulomb

La ley de Coulomb establece que la presencia de una carga puntual general induce en todo el espacio la aparición de un campo de fuerzas que decae según la ley de la inversa del cuadrado. Para modelizar el campo debido a varias cargas eléctricas puntuales estáticas puede usarse el principio de superposición dada la aditividad de las fuerzas sobre una partícula. Sin embargo, matemáticamente el manejo de expresiones vectoriales de ese tipo puede llegar a ser complicado, por lo que frecuentemente resulta más sencillo definir un potencial eléctrico. Para ello a una carga puntual \scriptstyle q_1 se le asigna una función escalar o potencial de Coulomb \scriptstyle \phi_1 tal que la fuerza dada por la ley de Coulomb sea expresable como:
\mathbf{F}_{12} = q_2\boldsymbol{\nabla}\phi_1
De la ley de Coumlomb se deduce que la función escalar que satisface la anterior ecuación es:
\phi_1(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{q_1}{\| \mathbf{r}- \mathbf{r}_{q_1}\|}
Donde:
\mathbf{r}, es el vector posición genérico de un punto donde se pretende definir el potencial de Coulomb y
\mathbf{r}_{q_1}, es el vector de posición de la carga eléctrica q_1\, cuyo campo pretende caracterizarse por medio del potencial.

 Verificación experimental de la Ley de Coulomb

Montaje experimental para verificar la ley de Coulomb.
Es posible verificar la ley de Coulomb mediante un experimento sencillo. Considérense dos pequeñas esferas de masa "m" cargadas con cargas iguales, del mismo signo, y que cuelgan de dos hilos de longitud l, tal como se indica en la figura adjunta. Sobre cada esfera actúan tres fuerzas: el peso mg, la tensión de la cuerda T y la fuerza de repulsión eléctrica entre las bolitas F_1 \,\!. En el equilibrio:
(1) T \ \sin \theta_1 =F_1 \,\!
y también:
(2) T \ \cos \theta_1 =mg \,\!
Dividiendo (1) entre (2) miembro a miembro, se obtiene:
\frac {\sin \theta_1}{\cos \theta_1 }=
\frac {F_1}{mg}\Rightarrow F_1= mg \tan \theta_1
Siendo L_1 \,\! la separación de equilibrio entre las esferas cargadas, la fuerza F_1 \,\! de repulsión entre ellas, vale, de acuerdo con la ley de Coulomb \scriptstyle F_1 = q^2/(4 \pi \epsilon_0 L_1^2) y, por lo tanto, se cumple la siguiente igualdad:
(3) \frac{q^2}{4 \pi \epsilon_0 L_1^2}=mg \tan \theta_1 \,\!
Al descargar una de las esferas y ponerla, a continuación, en contacto con la esfera cargada, cada una de ellas adquiere una carga q/2, en el equilibrio su separación será L_2<L_1 \,\! y la fuerza de repulsíón entre las mismas estará dada por:
F_2 = \frac{{(q/2)}^2}{4 \pi \epsilon_0 L_2^2}=\frac{q^2/4}{4 \pi \epsilon_0 L_2^2} \,\!
Por estar en equilibrio, tal como se dedujo más arriba: F_2= mg. \tan \theta_2 \,\!. Y de modo similar se obtiene:
(4) \frac{\frac{q^2}{4}}{4 \pi \epsilon_0 L_2^2}=mg. \tan \theta_2
Dividiendo (3) entre (4), miembro a miembro, se llega a la siguiente igualdad:
(5) \frac{\left( \cfrac{q^2}{4 \pi \epsilon_0 L_1^2} \right)}{\left(\cfrac{q^2/4}{4 \pi \epsilon_0 L_2^2}\right)}=
\frac{mg \tan \theta_1}{mg \tan \theta_2}
\Longrightarrow 4 {\left ( \frac {L_2}{L_1} \right ) }^2= 
\frac{ \tan \theta_1}{ \tan \theta_2}
Midiendo los ángulos \theta_1 \,\! y \theta_2 \,\! y las separaciones entre las cargas L_1 \,\! y L_2 \,\! es posible verificar que la igualdad se cumple dentro del error experimental. En la práctica, los ángulos pueden resultar difíciles de medir, así que si la longitud de los hilos que sostienen las esferas son lo suficientemente largos, los ángulos resultarán lo bastante pequeños como para hacer la siguiente aproximación:
\tan \theta  \approx \sin \theta= \frac{\frac{L}{2}}{l}=\frac{L}{2l}\Longrightarrow\frac{ \tan \theta_1}{ \tan \theta_2}\approx \frac{\frac{L_1}{2l}}{\frac{L_2}{2l}}
Con esta aproximación, la relación (5) se transforma en otra mucho más simple:
\frac{\frac{L_1}{2l}}{\frac{L_2}{2l}}\approx 4 {\left ( \frac {L_2}{L_1} \right ) }^2 \Longrightarrow \,\! \frac{L_1}{L_2}\approx 4 {\left ( \frac {L_2}{L_1} \right ) }^2\Longrightarrow \frac{L_1}{L_2}\approx\sqrt[3]{4} \,\!
De esta forma, la verificación se reduce a medir la separación entre cargas y comprobar que su cociente se aproxima al valor indicado.

 Comparación entre la Ley de Coulomb y la Ley de la Gravitación Universal

Esta comparación es relevante ya que ambas leyes dictan el comportamiento de dos de las fuerzas fundamentales de la naturaleza mediante expresiones matemáticas cuya similitud es notoria.
La ley de la gravitación universal establece que la fuerza de atracción entre dos masas es directamente proporcional al producto de las mismas e inversamente proporcional al cuadrado de la distancia que las separa. Expresándolo matemáticamente:
F = G\frac{m_1 m_2}{r^2} \,
Siendo:
G = 6,67\cdot 10^{-11}\ \text{N}\cdot \text{m}^2\cdot \text{kg}^{-1}\, la constante de gravitación universal,
m_1,\ m_2\, las masas de los cuerpos en cuestión y
r\, la distancia entre los centros de las masas.
A pesar del chocante parecido en las expresiones de ambas leyes se encuentran dos diferencias importantes. La primera es que en el caso de la gravedad no se han podido observar masas de diferente signo como sucede en el caso de las cargas eléctricas, y la fuerza entre masas siempre es atractiva. La segunda tiene que ver con los órdenes de magnitud de la fuerza de gravedad y de la fuerza eléctrica. Para aclararlo analizaremos como actúan ambas entre un protón y un electrón en el núcleo de hidrógeno. La separación promedio entre el electrón y el protón es de 5,3·10-11 m. La carga del electrón y la del protón valen e^-=-1,6 \times 10^{-19}C \,\! y p^+=1,6 \times 10^{-19}C \,\! respectivamente y sus masas son m_{e^-}=9,11 \times 10^{-31}kg \,\! y m_{p^+}=1,67 \times 10^{-27}kg \,\!. Sustituyendo los datos:

 F_E =\kappa \frac{q_1 q_2}{r^2}= 8,99 \times 10^{9}\frac{Nm^2}{C^2}\frac{|-1,6 \times 10^{-19}C| \times |1,6 \times 10^{-19}C|}{5,3 \times 10^{-11}m^2}=8,2 \times 10^{-8}N \,\!
 F_G = G\frac{m_1 m_2}{r^2}= 6,67 \times 10^{-11}\frac{Nm^2}{kg^2} \frac{9,11 \times 10^{-31}kg \times 1,67 \times 10^{-27}kg}{5,3 \times 10^{-11}m^2}=3,6 \times 10^{-47}N \,\!.
Al comparar resultados se observa que la fuerza eléctrica es de unos 39 órdenes de magnitud superior a la fuerza gravitacional. Lo que esto representa puede ser ilustrado mediante un ejemplo muy llamativo. 1 C equivale a la carga que pasa en 1 s por cualquier punto de un conductor por el que circula una corriente de intensidad 1 A constante. En viviendas con tensiones de 220 Vrms, esto equivale a un segundo de una bombilla de 220 W (120 W para las instalaciones domésticas de 120 Vrms).
Si fuera posible concentrar la mencionada carga en dos puntos con una separación de 1 metro, la fuerza de interacción sería:
 F_E =\kappa \frac{q_1 q_2}{r^2}= 8,99 \times 10^{9}\frac{Nm^2}{C^2} \frac {1C \times 1C}{{1m}^2}=9 \times 10^9N \,\!
o sea, ¡916 millones de kilopondios, o el peso de una masa de casi un millón de toneladas (un teragramo)!. Si tales cargas se pudieran concentrar de la forma indicada más arriba, se alejarían bajo la influencia de esta enorme fuerza. Si de esta hipotética disposición de cargas resultan fuerzas tan enormes, ¿por qué no se observan despliegues dramáticos debidos a las fuerzas eléctricas? La respuesta general es que en un punto dado de cualquier conductor nunca hay demasiado alejamiento de la neutralidad eléctrica. La naturaleza nunca acumula un Coulomb de carga en un punto.

 Limitaciones de la Ley de Coulomb

  • La expresión matemática solo es aplicable a cargas puntuales estacionarias, y para casos estáticos más complicados de carga necesita ser generalizada mediante el potencial eléctrico.
  • Cuando las cargas eléctricas están en movimiento es necesario reemplazar incluso el potencial de Coulomb por el potencial vector de Liénard-Wiechert, especialmente si las velocidades de las partículas son grandes comparadas con la velocidad de la luz.
  • Para distancias pequeñas (del orden del tamaño de los átomos), la fuerza electrostática se ve superada por otras, como la nuclear fuerte, o la nuclear débil.