sábado, 12 de febrero de 2011

La corriente o intensidad eléctrica es el flujo de carga por unidad de tiempo que recorre un material. Se debe a un movimiento de los electrones en el interior del material. En el Sistema Internacional de Unidades se expresa en C/s (culombios sobre segundo), unidad que se denomina amperio. Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético, lo que se aprovecha en el electroimán.
El instrumento usado para medir la intensidad de la corriente eléctrica es el galvanómetro que, calibrado en amperios, se llama amperímetro, colocado en serie con el conductor cuya intensidad se desea medir.

La corriente eléctrica es una corriente de electrones que atraviesa un material.
Algunos materiales como los "conductores" tienen electrones libres que pasan con facilidad de un átomo a otro.
Estos electrones libres, si se mueven en una misma dirección conforme saltan de un átomo a átomo, se vuelven en su conjunto, una corriente eléctrica.
Para lograr que este movimiento de electrones se de en un sentido o dirección, es necesario una fuente de energía externa.
Cuando se coloca un material eléctricamente neutro entre dos cuerpos cargados con diferente potencial (tienen diferente carga), los electrones se moverán desde el cuerpo con potencial más negativo hacia el cuerpo con potencia más positivo. Ver la figura
Los electrones viajan del potencial negativo al potencial positivo. Sin embargo se toma por convención que el sentido de la corriente eléctrica va desde el potencial positivo al potencial negativo.
Corriente eléctrica. Flujo de electrones de un cuerpo negativo a un cuerpo positivo - Electrónica Unicrom
Esto se puede visualizar como el espacio (hueco) que deja el electrón al moverse de un potencial negativo a un positivo. Este hueco es positivo (ausencia de un electrón) y circula en sentido opuesto al electrón.
La corriente eléctrica se mide en Amperios (A) y se simboliza con la letra I.
Hasta aquí se ha supuesto un flujo de corriente da va de un terminal a otro en, forma continua. A este flujo de corriente se le llama corriente continua. Hay otro caso en que el flujo de corriente circula, en forma alternada, primero en un sentido y después en el opuesto.

energia potencial en el campo electrico

Considérese una carga puntual q en presencia de un campo eléctrico. La carga experimentará una fuerza eléctrica.
\vec F=q \vec E \,\!
Ahora bien, si se pretende mantener la partícula en equilibrio, o desplazarla a velocidad constante, se requiere de una fuerza que contrarreste el efecto de la generada por el campo eléctrico. Esta fuerza deberá tener la misma magnitud que la primera, pero sentido contrario, es decir:
{\vec F}_a=-q \vec E \,\!(1)
Trabajo3.svg
Partiendo de la definición clásica de trabajo, en este caso se realizará un trabajo para trasladar la carga de un punto a otro.De tal forma que al producirse un pequeño desplazamiento dl se generará un trabajo dW. Es importante resaltar que el trabajo será positivo o negativo dependiendo de cómo se realice el desplazamiento en relación con la fuerza {\vec F}_a \,\!. El trabajo queda, entonces, expresado como:
dW={\vec F}_a \cdot d \vec{l}= F_a \, dl\cos (\theta) \,\!
Nótese que en el caso de que la fuerza no esté en la dirección del desplazamiento, sólo se debe multiplicar su componente en la dirección del movimiento.
Será considerado trabajo positivo el realizado por un agente externo al sistema carga-campo que ocasione un cambio de posición y negativo aquél que realice el campo.
Teniendo en cuenta la expresión (1):
dW=\vec F_a \cdot d \vec l = q \vec E \cdot d \vec {l} \,\!
Por lo tanto, el trabajo total será:
W=\int_{A}^{B} q\vec E \cdot d \vec l \,\!
Si el trabajo que se realiza en cualquiera trayectoria cerrada es igual a cero, entonces se dice que estamos en presencia de un campo eléctrico conservativo.
Expresándolo matemáticamente:
W=\int_{A}^{A} q\vec E \cdot d \vec l=0 \,\!
Ahora bien, sea una carga q que recorre una determinada trayectoria en las inmediaciones de una carga Q tal como muestra la figura.
Trabajoelectrico.svg
El trabajo infinitesimal es el producto escalar del vector fuerza F por el vector desplazamiento dl, tangente a la trayectoria, o sea:
\vec F \cdot d \vec l=F \, dl \cos(\theta)=F \, dr \,\!
donde dr es el desplazamiento infinitesimal de la carga q en la dirección radial.
Para calcular el trabajo total, se integra entre la posición inicial A, distante r_A \,\! del centro de fuerzas y la posición final B, distante r_B \,\! del centro fijo de fuerzas:
W=\int_{A}^{B} \frac {1}{4\pi{\epsilon}_0}\frac{Qq}{r^2} \, dr=\frac {1}{4\pi{\epsilon}_0}\frac{Qq}{r_A}-\frac {1}{4\pi{\epsilon}_0}\frac{Qq}{r_B} \,\!
De lo anterior se concluye que el trabajo W no depende del camino seguido por la partícula para ir desde la posición A a la posición B. lo cual implica que la fuerza de atracción F, que ejerce la carga Q sobre la carga q es conservativa. La fórmula de la energía potencial es:
E_p=\frac {1}{4\pi{\epsilon}_0}\frac{Qq}{r} \,\!
Por definición, el nivel cero de energía potencial se ha establecido en el infinito, o sea, si y sólo si  r=\infty, \quad E_p=0 \,\!.

 Diferencia de Potencial eléctrico

Considérese una carga de prueba positiva q_0 \,\! en presencia de un campo eléctrico y que se traslada desde el punto A al punto B conservándose siempre en equilibrio. Si se mide el trabajo que debe hacer el agente que mueve la carga, la diferencia de potencial eléctrico se define como:
V_B - V_A= \frac {W_{AB}}{q_0} \,\!
El trabajo W_{AB} \,\! puede ser positivo, negativo o nulo. En estos casos el potencial eléctrico en B será respectivamente mayor, menor o igual que el potencial eléctrico en A. La unidad en el SI para la diferencia de potencial que se deduce de la ecuación anterior es Joule/Coulomb y se representa mediante una nueva unidad, el voltio, esto es: 1 voltio = 1 joule/coulomb.
Un electronvoltio (eV) es la energía adquirida para un electrón al moverse a través de una diferencia de potencial de 1 V, 1 eV = 1,6x10-19 J. Algunas veces se necesitan unidades mayores de energía, y se usan los kiloelectronvoltios (keV), megaelectronvoltios (MeV) y los gigaelectronvoltios (GeV). (1 keV=103 eV, 1 MeV = 106 eV, y 1 GeV = 109 eV).
Aplicando esta definición a la teoría de circuitos y desde un punto de vista más intuitivo, se puede decir que el potencial eléctrico en un punto de un circuito representa la energía que posee cada unidad de carga al paso por dicho punto. Así, si dicha unidad de carga recorre un circuito constituyendóse en corriente eléctrica, ésta irá perdiendo su energía (potencial o voltaje) a medida que atraviesa los diferentes componentes del mismo. Obviamente, la energía perdida por cada unidad de carga se manifestará como trabajo realizado en dicho circuito (calentamiento en una resistencia, luz en una lámpara, movimiento en un motor, etc.). Por el contrario, esta energía perdida se recupera al paso por fuentes generadoras de tensión. Es conveniente distinguir entre potencial eléctrico en un punto (energía por unidad de carga situada en ese punto) y corriente eléctrica (número de cargas que atraviesan dicho punto por segundo).
Usualmente se escoge el punto A a una gran distancia (en rigor el infinito) de toda carga y el potencial eléctrico V_A \,\! a esta distancia infinita recibe arbitrariamente el valor cero. Esto permite definir el potencial eléctrico en un punto poniendo V_A =0 \,\! y eliminando los índices:
V=\frac {W}{q_0} \,\!
siendo W \,\! el trabajo que debe hacer un agente exterior para mover la carga de prueba q_0 \,\! desde el infinito al punto en cuestión.
Obsérvese que la igualdad planteada depende de que se da arbitrariamente el valor cero al potencial V_A \,\! en la posición de referencia (el infinito) el cual hubiera podido escogerse de cualquier otro valor así como también se hubiera podido seleccionar cualquier otro punto de referencia.
También es de hacer notar que según la expresión que define el potencial eléctrico en un punto, el potencial en un punto cercano a una carga positiva aislada es positivo porque debe hacerse trabajo positivo mediante un agente exterior para llevar al punto una carga de prueba (positiva) desde el infinito. Similarmente, el potencial cerca de una carga negativa aislada es negativo porque un agente exterior debe ejercer una fuerza (trabajo negativo en este caso) para sostener a la carga de prueba (positiva) cuando esta (la carga positiva) viene desde el infinito.
Por último, el potencial eléctrico queda definido como un escalar porque W \,\! y q_0 \,\! son escalares.
Tanto W_{AB} \,\! como V_B-V_A \,\! son independientes de la trayectoria que se siga al mover la carga de prueba desde el punto A hasta el punto B. Si no fuera así, el punto B no tendría un potencial eléctrico único con respecto al punto A y el concepto de potencial sería de utilidad restringida.
Una carga de prueba se mueve desde A hasta B en el campo de carga q siguiendo una de dos trayectorias. Las flechas muestran a E en tres puntos de la trayectoria II
Es posible demostrar que las diferencias de potencial son independientes de la trayectoria para el caso especial representado en la figura. Para mayor simplicidad se han escogido los puntos A y B en una recta radial.
Una carga de prueba puede trasladarse desde A hacia B siguiendo la trayectoria I sobre una recta radial o la trayectoria II completamente arbitraria.
La trayectoria II puede considerarse equivalente a una trayectoria quebrada formada por secciones de arco y secciones radiales alternadas. Puesto que estas secciones se pueden hacer tan pequeñas como se desee, la trayectoria quebrada puede aproximarse a la trayectoria II tanto como se quiera. En la trayectoria II el agente externo hace trabajo solamente a lo largo de las secciones radiales, porque a lo largo de los arcos, la fuerza \vec F \,\! y el corrimiento \vec dl \,\! son perpendiculares y en tales casos \vec F \, d\vec l \,\! es nulo. La suma del trabajo hecho en los segmentos radiales que constituyen la trayectoria II es el mismo que el trabajo efectuado en la trayectoria I, porque cada trayectoria está compuesta del mismo conjunto de segmentos radiales. Como la trayectoria II es arbitraria, se ha demostrado que el trabajo realizado es el mismo para todas las trayectorias que unen A con B.
Aun cuando esta prueba sólo es válida para el caso especial ilustrado en la figura, la diferencia de potencial es independiente de la trayectoria para dos puntos cualesquiera en cualquier campo eléctrico. Se desprende de ello el carácter conservativo de la interacción electrostática el cual está asociado a la naturaleza central de las fuerzas electrostáticas.
Para un par de placas paralelas en las cuales se cumple que {V}={Ed} \,\!, donde d es la distancia entre las placas paralelas y E es el campo eléctrico constante en la región entre las placas.

 Campo eléctrico uniforme

Sean A y B dos puntos situados en un campo eléctrico uniforme, estando A a una distancia d de B en la dirección del campo, tal como muestra la figura.
Una carga de prueba q se mueve de A hacia B en un campo eléctrico uniforme E mediante un agente exterior que ejerce sobre ella una fuerza F.
Considérese una carga de prueba positiva q moviéndose sin aceleración, por efecto de algún agente externo, siguiendo la recta que une A con B.
La fuerza eléctrica sobre la carga será qE y apunta hacia abajo. Para mover la carga en la forma descrita arriba, se debe contrarrestar esa fuerza aplicando una fuerza externa F de la misma magnitud pero dirigida hacia arriba. El trabajo W \,\! realizado por el agente que proporciona esta fuerza es:
W_{AB}=Fd=qEd \,\!
Teniendo en cuenta que:
V_B-V_A=\frac{W_{AB}}{q} \,\!
sustituyendo eso que esta mal se obtiene:
V_B-V_A=\frac{W_{AB}}{q}=Ed \,\!
Esta ecuación muestra la relación entre la diferencia de potencial y la intensidad de campo en un caso sencillo especial.
El punto B tiene un potencial más elevado que el A. Esto es razonable porque un agente exterior tendría que hacer trabajo positivo para mover la carga de prueba de A hacia B.

 Campo eléctrico no uniforme
En el caso más general de un campo eléctrico no uniforme, este ejerce una fuerza q\vec E \,\! sobre la carga de prueba, tal como se ve en la figura. Para evitar que la carga acelere, debe aplicarse una fuerza \vec F \,\! que sea exactamente igual a -q\vec E \,\! para todas las posiciones del cuerpo de prueba.
Si el agente externo hace que el cuerpo de prueba se mueva siguiendo un corrimiento d \vec l \,\! a lo largo de la trayectoria de A a B, el elemento de trabajo desarrollado por el agente externo es \vec F \cdot d\vec l\ \,\!. Para obtener el trabajo total W_{AB} \,\! hecho por el agente externo al mover la carga de A a B, se suman las contribuciones al trabajo de todos los segmentos infinitesimales en que se ha dividido la trayectoria. Así se obtiene:
W_{AB}=\int_{A}^{B}\vec F \cdot d \vec l=-q\int_{A}^{B}\vec E \cdot d \vec l \,\!
Como V_B-V_A=\frac{W_{AB}}{q} \,\!, al sustituir en esta expresión, se obtiene que
V_B-V_A= -\int_{A}^{B}\vec E \cdot d \vec l \,\!
Si se toma el punto A infinitamente alejado, y si el potencial V_A \,\! al infinito toma el valor de cero, esta ecuación da el potencial en el punto B, o bien, eliminando el subíndice B,
V= -\int_{\infty }^{B}\vec E \cdot d \vec l \,\!
Estas dos ecuaciones permiten calcular la diferencia de potencial entre dos puntos cualesquiera si se conoce \vec E \,\!.